
GALOIS THEORY TOPIC IV
MODULAR ARITHMETIC

PAUL L. BAILEY

Abstract. Modular arithmetic involves computing remainders upon addition

and multiplication, and has wide ranges applications. Our interest in modular
arithmetic is its uses for study polynomials with integer coefficients, which will

come in the next topic.

1. Congruence Modulo n

Definition 1. Let n ∈ Z with n ≥ 2. Let a, b ∈ Z. We say that a is congruent to
b modulo n, and write a ≡ b (mod n), if the difference a− b is divisible by n:

a ≡ b (mod n) ⇔ n | (a− b).

Proposition 1. Let n ∈ Z with n ≥ 2, and let a, b, c ∈ Z. Then
(a) a ≡ a (mod n) (Reflexivity);
(b) if a ≡ b (mod n), then b ≡ a (mod n) (Symmetry);
(c) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) (Transitivity).

Proof.
(Reflexivity) Note that 0 · n = 0 = a− a; thus n | (a− a), so a ≡ a. Therefore ≡ is
reflexive.
(Symmetry) Let a, b ∈ Z. Suppose that a ≡ b; then n | (a − b). Then there exists
k ∈ Z such that nk = a − b. Then n(−k) = b − a, so n | (b − a). Thus b ≡ a.
Similarly, b ≡ a ⇒ a ≡ b. Therefore ≡ is symmetric.
(Transitivity) Let a, b, c ∈ Z, and suppose that a ≡ b and b ≡ c. Then nk = a − b
and nl = b − c for some k, l ∈ Z. Then a − c = nk − nl = n(k − l), so n | (a − c).
Thus a ≡ c. Therefore ≡ is transitive. �

Proposition 2. Let n ∈ N and let a1, a2 ∈ Z. By the Division Algorithm, there
exist unique integers q1, r1, q2, r2 ∈ Z such that

• a1 = nq1 + r1, where 0 ≤ r1 < n;
• a2 = nq2 + r2, where 0 ≤ r2 < n.

Then a1 ≡ a2 (mod n) if and only if r1 = r2.

Proof.
(⇒) Suppose that a1 ≡ a2. Then n | (a1 − a2). This means that nk = a1 − a2

for some k ∈ Z. But a1−a2 = n(q1− q2)+ (r1− r2). Then n(k + q1− q2) = r1− r2,
so n | r1 − r2.

Multiplying the inequality 0 ≤ r2 < n by −1 gives −n < −r2 ≤ 0. Adding this
inequality to the inequality 0 ≤ r1 < n gives −n < r1 − r2 < n. But r1 − r2 is an
integer multiple of n; the only possibility, then, is that r1 − r2 = 0. Thus r1 = r2.
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(⇐) Suppose that r1 = r2. Then a1 − a2 = nq1 − nq2 = n(q1 − q2). Thus
n | (a1 − a2), so a1 ≡ a2. �
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2. The Residue Map

Let n ∈ Z with n ≥ 2. For each a ∈ Z, there is a unique r in the range 0 ≤ r < n
such that r is congruent to a modulo n. We say that r represents a, and we see
that, if b is congruent to a, then r represents b also. To study this, it is convenient
to focus on the set of possible representatives.

Definition 2. Let n ∈ Z with n ≥ 2. The set of integers modulo n is

Zn = {0, 1, . . . , n− 1}.

Thus Zn denotes the set of integers which are the possible remainders upon
division by n. For example,

Z3 = {0, 1, 2} and Z13 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
The next definition formalizes the function which takes an integer and returns its
representative in Zn.

Definition 3. Let n ∈ Z with n ≥ 2.
The residue map modulo n is the function

ξn : Z → Zn given by ξn(a) = the remainder when n is divided by a.

We call ξn(a) the residue of a modulo n.

We restate Proposition 2 in terms of this function.

Proposition 3. Let n ∈ Z with n ≥ 2, and let a, b ∈ Z. Then

a ≡ b (mod n) ⇔ ξn(a) = ξn(b).

We give some examples of where these concepts arise.

Example 1. If the time now is 5 pm, what time will it be in 87 hours?

Solution. Using a 24 hour clock, 5 pm is 17. Now compute modulo n = 24 to obtain

17 + 87 ≡ 104 ≡ 8 (mod 24),

so the time in 87 hours will be 8 am. �

Example 2. If today is Thursday, what day will it be in 258 days?

Solution. Let’s set 0 = Sunday, 1 = Monday, 2 = Tuesday, 3 = Wednesday,
4 = Thursday, 5 = Friday, and 6 = Saturday. Now compute modulo n = 7 to
obtain

2 + 258 ≡ 260 ≡ 1 (mod 7).
Since 1 = Monday, it will be Monday in 258 days. �

Example 3. Let i ∈ C with i2 = −1. Find i1571.

Proof. Here, we compute modulo 4. Now 1571 = 4(392) + 3, so

i1571 = i4(392)+3 = (i4)392i3 = 1392i3 = i3 = −i.

�

In Example 3, it was more convenient to avoid the congruence notation, and one
finds that this is often the case. What matters is understanding congruence and
its applications. As a matter of convenience, we redefine the operations of addition
and multiplication on congruence representatives to always compute modulo n.
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3. Modular Arithmetic

Modular Arithmetic is the study of addition and multiplication of the residues
modulo n. To isolate this, we consider only the set of numbers from 0 to n−1, and
define operations of addition and multiplication which are closed on this set.

Definition 4. Define operations of addition modulo n and multiplication modulo
n on the set Zn by

a + b , ξn(a + b) and ab , ξn(ab),

where the symbol , means “is defined to be”.

It is important to keep in mind that for a, b ∈ Zn, when we write a + b = a + b,
the addition on the left is a different operation than the addition on the right; on
the left is addition in Zn (modulo n), and on the right it is addition in the integers.
One must make the distinction from the context. Analogous remarks apply to
multiplication.

The following properties of the residue map are critical in all that follows.

Proposition 4. Let n ∈ Z with n ≥ 2, and let a, b ∈ Z. Then
(a) ξn(a + b) = ξn(a) + ξn(b);
(b) ξn(ab) = ξn(a)ξn(b).

Proof. Exercise. �

Again, we point out that, for example in (b), in the equation

ξn(a + b) = ξn(a) + ξn(b),

the addition on the left is in Z, whereas the addition on the right is in Zn, and is
performed modulo n.

Just as the congruence notation becomes cumbersome, so does the residue no-
tation; thus we use the following BAR notation when n is understood. Let n ∈ Z
with n ≥ 2. For a ∈ Z, let a denote the remainder when a is divided by n. Also,
for a ∈ Zn, let −a denote the additive inverse of a, given by a = n− a, so that
a + (−a) = 0.

Example 4. Let n = 7. Then Zn = Z7 = {0, 1, 2, 3, 4, 5, 6}. The following are
modular computations in this set.

• 3 + 5 = 3 + 5 = 8 = 1
• −5 = −5 = 7− 5 = 2, so 4− 5 = 1 + 2 = 3
• 3 · 5 = 15 = 1
• 52 = 25 = 4

Example 5. Let n = 12. Then Zn = Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. The
following are modular computations in this set.

• 4 + 8 = 12 = 0; thus 8 = −4
• 8 + 11 = 19 = 7
• 6 · 10 = 60 = 0
• 5 · 7 = 35 = 11, which is −1
• 112 = 1, since 11 = −1
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The next proposition states that Zn is a ring, which we will formally define later.

Proposition 5. Let n ∈ Z with n ≥ 2. Then addition and multiplication on Zn

satisfies:
(A1) a + b = b + a for every a, b ∈ Zn;
(A2) a + (b + c) = (a + b) + c for every a, b, c ∈ Zn;
(A3) 0 + a = a for every a ∈ Zn;
(A4) a + (−a) = 0 for every a ∈ Zn, where −a = n− a;
(M1) ab = ba for every a, b ∈ Zn;
(M2) a(bc) = (ab)c for every a, b, c ∈ Zn;
(M3) 1 · a = a for every a ∈ Zn;
(DL) a(b + c) = ab + ac for every a, b, c ∈ Zn.

Proof. All of these properties follow from the corresponding properties in Z. �

4. Invertible Elements

Definition 5. Let n ∈ Z with n ≥ 2. An element a ∈ Zn is called invertible if
there exists an element b ∈ Zn such that a · b = 1.

Proposition 6. Let n ∈ Z with n ≥ 2, and let a, b, c ∈ Zn. Suppose that ab = ac =
1. Then b = c.

Proof. Since ab = ac = 1, and multiplication is commutative, we have b = b · 1 =
bac = abc = 1 · c = c. �

Thus if a is invertible, there is a unique b such that ab = 1. We call b the inverse
of a, and let a−1 denote this inverse.

Lemma 1. (Relative Primeness Criterion)
Let m,n ∈ Z. Then gcd(m,n) = 1 if and only if there exist integers x, y ∈ Z such
that xm + yn = 1.

Proof. We have previously seen that if d = gcd(m,n), then there exist x, y ∈ Z
such that xm + yn = d. In the case of d = 1, we wish to prove the converse.

Suppose that xm + yn = 1, and let d = gcd(m,n). Then d | m and d | n, so
d | xm + yn, that is, d | 1. Since d | 1 and d ≥ 1, we see that d = 1. �

Proposition 7. Let n ∈ N and let a ∈ Zn.
Then a is invertible if and only if gcd(a, n) = 1.

Proof.
(⇒) Suppose that a is invertible, and let b be its inverse. Then ab = 1, so

ab ≡ 1 (mod n). That is, kn = ab − 1 for some k ∈ Z. Thus ab + (−k)n = 1.
Therefore gcd(a, n) = 1 by Lemma 1.

(⇐) Suppose that gcd(a, n) = 1. Then there exist x, y ∈ Z such that xa+yn = 1.
Then x · a + y · n = 1. But n = 0, so y · n = 0. Thus x · a = 1, and x is the inverse
of a, so a is invertible. �

Proposition 8. Let p ∈ N be a prime number.
Then every nonzero element of Zp is invertible.

Proof. Exercise. �
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5. Zero Divisors

Definition 6. Let n ∈ Z with n ≥ 2. Let a ∈ Z be nonzero. We say that a is a
zero divisor if there exists b ∈ Z which is nonzero such that ab = 0.

Lemma 2. Let n ∈ Z with n ≥ 2. Then 0 · a = 0 for every a ∈ Z.

Proof. By definition of multiplication in Zn, 0 · a = 0 · a = 0. �

Proposition 9. Let n ∈ Z with n ≥ 2, and let a ∈ Zn. If a is invertible, then a is
not a zero divisor.

Proof. Suppose a is invertible, and let b ∈ Z such that ab = 0. Multiply on the
left by a−1 to get a−1ab = a−1 · 0, whence b = 0. This shows that a is not a zero
divisor, because the only element in Zn which can be multiplied with a to produce
0 is 0 itself. �

Example 6. Let n = 6; in Z6, the invertible elements are 1 and 5. The zero
divisors are 2, 3, and 4. To see this, consider 2 · 3 = 6 = 0, and 3 · 4 = 12 = 0.

Proposition 10. Let n ∈ Z with n ≥ 2. Let a ∈ Zn.
Then a is a zero divisor if and only if gcd(a, n) ≥ 2.

Proof. Let d = gcd(a, n).
Suppose that d = 1. Then a is invertible by Proposition 7, so a is not a zero

divisor by Proposition 9.
Suppose that d ≥ 2. Using arithmetic in Z, the Euclidean algorithm dictates

that there exist x, y ∈ Z such that ax + ny = d. We also have d | n. Then there
exists b ∈ Z such that bd = n, and since d ≥ 2, we have 0 < b < n. Applying the
residue map to ax + ny = d gives Then ax + ny = d, and since n = 0, we have
ax = d. Multiply this equation by b to get

axb = db = n = 0.

Thus a is a zero divisor. �

Proposition 11. If n ∈ N is not a prime number, then Zn contains zero divisors.

Proof. Exercise. �

Proposition 12. Let n ∈ N and let a ∈ Zn be a nonzero element.
Then a is invertible if and only if a is not a zero divisor.

Proof. Exercise. �
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6. Additive Order of an Element in Zn

For any k ∈ N and any a ∈ Zn, define ka to be a added to itself k times modulo
n, that is, added in the set Zn:

ka =
k∑

i=1

a.

It is clear that ka = ka.

Definition 7. Let a ∈ Zn. Define the additive order of a to be smallest positive
integer k such that ka = 0. The additive order of a is denoted ord+(a).

Proposition 13. Let a ∈ Zn and let ord+(a) = k. Then
(a) ja = 0 ⇔ k | j;
(b) na = 0;
(c) k | n.

Proof.
(a) If k | j, then j = lk for some l ∈ Z. In this case, ja = lka = l · 0 = 0.
Conversely, suppose that ja = 0. Write j = qk + r, where 0 ≤ r < k. Then

ja = qka + ra = ra since ka = 0. But k is the smallest positive integer such that
ka = 0. Thus r = 0, and j = qk. Thus k | j.

(b) Note that na = na = 0. Thus na = 0.
(c) By (b), na = 0. Thus k | n by part (a). �

Proposition 14. Let a ∈ Zn and let d = gcd(a, n).
Then ord+(a) = n

d .

Proof. Exercise. �

Example 7. Let n = 24 and a = 20. Now gcd(a, n) = 4, so ord+(a) = 24
4 = 6.

Indeed, 6 · 20 = 120 is the smallest multiple of 20 which is divisible by 24.

Example 8. Let p = 7 and consider Zp. The order of every nonzero element is 7.

7. The Multiplicative Order of an Invertible Element

Definition 8. Let n ∈ Z with n ≥ 2. The set of invertible elements in Zn is
denoted Z∗n.

Let a ∈ Zn. The multiplicative order of a is the smallest positive integer k such
that ak = 1. The multiplicative order of a is denoted ord∗(a).

Example 9. Let n = 20 and a = 3. Now a2 = 9, a3 = 27 = 7, a4 = 21 = 1, so
ord∗(a) = 4.
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8. Algebraic Equations in Zn

We now turn our attention to the question of when an equation, such as 14x = 1
or x2 + 1 = 0, has a solution in Zn, and how many solutions it has. For example,
14x = 1 has a solution if and only if 14 is invertible in Zn, and this is the case if
and only if n and 14 are relatively prime. In fact, we have an explicit technique for
finding the inverse 14. This technique makes repeated use of the division algorithm.

Suppose n = 33. Then 14 and 33 are relatively prime, so there exist integers x
and y such that 14x + 33y = 1. To find them, we divide:

• 33 = 14 · 2 + 5;
• 14 = 5 · 2 + 4
• 5 = 4 · 1 + 1;
• 2 = 1 · 2 + 0.

The second to last remainder is 1, so gcd(14, 33) = 1. Now work backwards to
find x and y:

• 1 = 5− 4;
• 1 = 5− (14− 5 · 2) = 5 · 3− 14 · 1;
• 1 = (33− 14 · 2) · 3− 14 · 1 = 33 · 3− 14 · 7.

Thus the inverse of 14 in Z33 is −7 = 26.
The equation x2 + 1 = 0 is more interesting. To understand it, note that −1

exists in Zn as n− 1. So a solution to the equation x2 + 1 = 0 would be a square
root of negative 1 in Zn. For example, in Z5, we have 22 = 4 = −1 (mod 5).

It is also possible that a quadratic equation, such as x2 − 1 = 0, can have more
than two solutions in Zn. Note that x2 − 1 = (x + 1)(x− 1), even in Zn. Suppose
that n = 15. Then x = 1 and x = −1 = 14 are solutions, but so is 4, since
(4 + 1)(4− 1) = 5 · 3 = 0 (modulo 15).

However, suppose that n = p is a prime number. Then in Zp, a quadratic
equation can have at most 2 roots. This is because Zp has no zero divisors. If the
quadratic has a root, it factors; then if the product of the factors is zero, one of
them must be zero.

For example, let us find the roots of x2+8x+1 = 0 in Z11. Now 8 ≡ −3 (mod 11)
and 1 ≡ −10 (mod 11), so our equation becomes x2 − 3x− 10 = 0. This factors as
(x− 5)(x + 2) = 0. Since 11 is prime, the only roots are 5 and −2 = 8.
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9. Exercises

Exercise 1. Let a ∈ Zn and let d = gcd(a, n).
Then ord+(a) = n

d . (Hint: let k = ord+(a), and show that k | n
d and that n

d | k.)

Exercise 2. Find the additive order of 6, 11, 18, and 28 in Z36.

Exercise 3. Let p ∈ N be a prime number.
Show that every nonzero element of Zp is invertible.

Exercise 4. Show that if n ∈ N is not a prime number, then Zn contains zero
divisors.

Exercise 5. Let n ∈ N and let a ∈ Zn be a nonzero element.
Show that a is invertible if and only if a is not a zero divisor.

Exercise 6. Find the inverse of 15 in Z49.

Exercise 7. Solve the equation 17x = 23 in Z71.

Exercise 8. Solve the equation x2 − 5x− 2 = 0 in Z11.

Exercise 9. Solve the equation x2 − 5x + 4 = 0 in Z6.

Exercise 10. Find all square roots of −1 in Z101.
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